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Summary
E-voting schemes based on homomorphic encryption pro-
vide universal verifiability. With homomorphic encryption,
encrypted ballots can be added to obtain the encryption of
the tally without having to be individually decrypted first.
However, nothing prevents the election authority from de-
crypting individual balllots instead of the election result,
thus violating voter’s privacy. To avoid this, a secret shar-
ing scheme is often used to split the decryption key into a
set of shares that will be given to several authorities, as-
suming that it is unlikely for a certain subset of authorities
to be all dishonest and willing to know individual votes.
In this work we study a different decryption mechanism
that lets the authority decrypt any ciphertext obtained as a
result of performing some operation on a set of encrypted
ballots, but prevents the decryption of a ciphertext that
encrypts one single ballot.

Participants
Let V be the number of voters, N the number of can-
didates, and an election authority. All participants are
seen as probabilistic Turing machines, which can perform
polynomial-time computations.
Participants can communicate with each other through a
public channel with memory: the Bulletin Board (BB).

Homomorphic encryption
Let E(r,m) denote a probabilistic encryption of message
m using the random parameter r. Consider a plaintext
space M and a ciphertext space C such that M is a
group under the binary operation ⊕, and C is a group
under the operation ⊗.
A probabilistic encryption scheme is said to be
(⊗,⊕)-homomorphic, if given c1 = E(r1,m1) and
c2 = E(r2,m2), there exists an r such that

c1 ⊗ c2 = E(r,m1 ⊕m2).

Exponential ElGamal
Exponential ElGamal is a (·,+)-homomorphic (additive)
variant of the well-known ElGamal public-key cryptosys-
tem [2].

Let p and q be large primes such that q | (p − 1), and
let g be a generator of the order-q subgroup of Z?

p, for
which the discrete logarithm problem is considered to be
intractable.
• private key: s, drawn uniformly at random from Zq.
• public key: h = gs mod p. The values p, q, and g

are also public parameters.
We assume that each vote is a yes or no for each candi-
date, encoded by 1 and 0, respectively.

Casting a vote

Each voter 1 ≤ i ≤ V posts to the BB an encrypted
ballot cij of the form

cij = (Rij, Sij) = (grij, gmijhrij)

for every candidate 1 ≤ j ≤ N, where mij ∈ {0, 1} is
her vote to candidate j, and rij is a random value. To-
gether with the encrypted ballot, a non-interactive proof
of knowledge that proves in zero-knowledge the validity of
the ballot is also published.

Result of the election

Considering only valid ballots, the authority obtains an
encryption of the sum of votes for every candidate
1 ≤ j ≤ N as follows

V∏
i=1

cij = (Xj, Yj) = (
V∏
i=1

Rij mod p,
V∏
i=1

Sij mod p)

= (gr′j, gm′jhr′j), (1)

where r′j =
V∑
i=1

rij, and m′j =
V∑
i=1

mij.

Table 1 gives an overview of the tallying process from the
information published at the bulletin board.
Finally, in order to decrypt the result of the election, the
authority computes for every candidate 1 ≤ j ≤ N

m′j = logg
Yj

(Xj)s
= logg gm′j. (2)

The total number of votes going for m′j for candidate j

can be efficiently computed by using methods like Baby
step giant step [1], or the Pollard rho method [3].

Problem:
• the whole responsibility of the election relies on one
authority.

• performing the same operation as in (2) the authority
could equally decrypt individual encrypted ballots
(Rij, Sij) instead of the encryption (Xj, Yj) of the
result, thus violating voter’s privacy.

BB cand. 1 . . . cand. N
voter 1 c11 = (gr11, gm11hr11) ... c1N = (gr1N, gm1Nhr1N)

... ... ... ...
voter V cV1 = (grV1, gmV1hrV1) · · · cVN = (grVN, gmVNhrVN)↓

V∏
i=1

ci1 · · ·
V∏
i=1

ciN

Table 1 : Computation of the tally.

Secret sharing
Both in its versions with or without dealer, secret shar-
ing schemes are used to split a secret key s and distribute
the corresponding shares among several authorities in such
a way that only some predefined coalitions of authorities
can later reconstruct the secret. One of the most com-
mon schemes is Shamir’s (t, T) secret-sharing scheme [4],
which only allows to any coalition of at least t from T

authorities to get the secret.
Problem:
• A coalition of t dishonest authorities can recover the
secret key before having the election result.

Decrypting only the tally
The tally can be decrypted by using the random value of
the encryption of the sum of votes r′j.
Once we have the encryption of the sum of votes for a
certain candidate j, as in (1), and knowing the sum of
the randomness, r′j, one can compute hr′j and decrypt the
election result by doing as follows

m′j = logg
Yj

hr′j
= logg gm′j.

Advantages of decrypting with the randomness:
• The secret key is only used to generate the
corresponding public key, after that it can be
permanently destroyed/forgotten.

• Privacy: given the randomness r′j, only the ciphertext
containing the tally can be decrypted, and not the
individual encrypted ballots.

• Verifiability: Unlike the private key, the value r′j can
be made public for anyone willing to check the
decryption.

Ongoing work

Analyze and evaluate the pros and cons of the possible
ways in which voters can secretly communicate the sum
of the random values they used to encrypt their ballots.
Some of the options under consideration:
• Voters are given a pre-computed random value to
encrypt their ballot. Problem: authority will again
have all responsibility of the election. Who would
generate this value and how will it be communicated
to the voters?

• Voters use (Pedersen) commitment schemes to
commit to the random value they used to encrypt
their ballot. Problem: secure channel between the
voter and the server. Assuming untappable, or
anonymous and untappable channels is impractical.
Assuming only anonymous channel is more practical.

• Voters securely add their random values through a
multiparty computation and send the final result to
the election authority.
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