About the \mathbb{Z}_4 -linear Reed-Muller $ZRM^-(r, m-1)$ and $RM_s(r, m)$ codes^{*}

J. Rifà¹ and L. Ronquillo¹

¹ Dept. of Information and Communications Engineering, Universitat Autònoma de Barcelona, Spain ({josep.rifa,lorena.ronquillo}@autonoma.edu).

Abstract. Several different families of quaternary codes related to Reed-Muller binary linear codes can be found in the literature. Two definitions of such families are denoted as $\mathcal{ZRM}^{-}(r,m)$ and $\{\mathcal{RM}_{s}(r,m)\}$. In the current paper $\mathcal{ZRM}^{-}(r,m-1)$ and $\{\mathcal{RM}_{s}(r,m)\}$ codes are shown to be equal exactly for s = 0 ($0 \le s \le \lfloor \frac{m-1}{2} \rfloor$). Therefore, for the above-mentioned value of s, \mathbb{Z}_{4} -linear Reed-Muller codes with the same parameters and properties as the usual binary linear Reed-Muller code are obtained with both definitions.

Key words: Plotkin construction, Reed-Muller codes, \mathbb{Z}_4 -linear codes.

1 Introduction

The concept of \mathbb{Z}_4 -linearity of binary codes was pioneered by Nechaev in [10]. This result opened up a new direction in Coding Theory. It basically stated that certain non-linear binary codes, for instance Kerdock codes, can be derived from linear codes over the ring \mathbb{Z}_4 .

In a later work, Hammons, Kumar, Calderbank, Sloane and Solé [6], defined two families of quaternary codes called $\mathcal{QRM}(r,m)$ and $\mathcal{ZRM}(r,m)$ codes. Moreover, in respect of the usual binary linear Reed-Muller codes RM(r,m), they conjectured their \mathbb{Z}_4 -linearity for $r \in \{0, 1, 2, m - 1, m\}$, but not for $3 \leq r \leq m - 2$ (whenever $m \geq 5$). They proved it for r = m - 2 but the remain values of r were not validated until the work of Hou, Lahtonen and Koponen [7].

Zhe-Xian Wan also defined $\mathcal{ZRM}(r,m)$ codes with the aim of reviewing the codes first defined in [6]. However, in [2] it is proved that they happened to be a different definition of quaternary Reed-Muller codes, which from now on will be denoted as $\mathcal{ZRM}^{-}(r,m)$. In fact, as stated in [2], $\mathcal{ZRM}(r,m)$ and $\mathcal{ZRM}^{-}(r,m)$ just coincide for the above-named values of $r \in \{0, 1, 2, m - 1, m\}$ that make their corresponding binary images to be Reed-Muller codes.

^{*} This work has been partially supported by the Spanish MEC and the European FEDER Grants MTM2006-03250 and TSI2006-14005-C02-01.

Codes $\mathcal{QRM}(r,m)$ are such that the binary linear Reed-Muller codes RM(r,m) are obtained after computing, for each $r, 0 \leq r \leq m$, the modulo two instead of the Gray map. These codes were further generalized in [1], where it is defined a class $\overline{\mathcal{QRM}}(r,m)$ of quaternary codes that includes $\mathcal{QRM}(r,m)$.

Just as binary Reed-Muller codes can be built by means of the Plotkin construction [9], in [12] quaternary Plotkin constructions are introduced to build new families of quaternary Reed-Muller codes, denoted as $\{\mathcal{RM}_s(r,m)\}$. These families were constructed in such a way that the corresponding \mathbb{Z}_4 -linear codes, obtained under the Gray map, are binary codes which have the same parameters and properties as the binary linear Reed-Muller codes $\mathcal{RM}(r,m)$.

Comparing the above-named definitions of $\mathcal{ZRM}^{-}(r,m)$ and $\{\mathcal{RM}_{s}(r,m)\}$ families of codes, we found that, actually, the families $\{\mathcal{RM}_{s}(r,m)\}$ can be seen as a generalization of $\mathcal{ZRM}^{-}(r,m-1)$, since this last one coincides with the specific family s = 0, that is with $\mathcal{RM}_{0}(r,m)$.

This paper has been organized as follows: in Section 2 some basic definitions and notation, which will be needed in the remainder of the paper, are given. In Section 3 some properties of binary Reed-Muller codes are reviewed whereas Section 4 is focused on quaternary Reed-Muller codes. Section 4.1 reviews the definition and construction of $\mathcal{ZRM}^-(r,m)$ codes introduced by [13], and Section 4.2 is devoted to { $\mathcal{RM}_s(r,m)$ } families of codes, from [12]. In Section 5 the equality between the $\mathcal{ZRM}^-(r,m-1)$ and { $\mathcal{RM}_0(r,m)$ } families is established and proved. Finally, some conclusions are drawn in Section 6 and future lines of research are given in Section 7.

2 Definitions

Let \mathbb{Z}_2 and \mathbb{Z}_4 be the ring of integers modulo two and modulo four, respectively. Let \mathbb{Z}_2^n denote the set of all *n*-length vectors over \mathbb{Z}_2 and \mathbb{Z}_4^N be the set of all *N*-length vectors over \mathbb{Z}_4 . Any non-empty subset *C* of \mathbb{Z}_2^n is a *binary code* and, moreover, a subgroup of \mathbb{Z}_2^n is called a *binary linear code*. Equivalently, any non-empty subset *C* of \mathbb{Z}_4^n is a *quaternary code* which is also called *quaternary linear code* if it is a subgroup of \mathbb{Z}_4^n . In general, any non-empty subgroup *C* of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code.

We will denote by 0, 1 and 2 the all-zeroes, the all-ones and the all-twos vectors, respectively. It will be clear by the context whether we refer to binary vectors 0, 1 or to quaternary vectors.

The Hamming distance $d(\mathbf{u}, \mathbf{v})$ between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_2^n$ is the number of coordinates in which they differ. The Hamming weight $w_H(\mathbf{u})$ of a vector $\mathbf{u} \in \mathbb{Z}_2^n$ is the number of nonzero coordinates. The minimum Hamming distance d of a binary code C is the minimum value of $d(\mathbf{u}, \mathbf{v})$, where $\mathbf{u}, \mathbf{v} \in C$ and $\mathbf{u} \neq \mathbf{v}$.

In the case of quaternary codes the Lee metric is used, which, actually, coincides with the Hamming weight in \mathbb{Z}_2 . However, the elements of \mathbb{Z}_4 have the following Lee weights: $w_L(0) = 0$, $w_L(1) = w_L(3) = 1$ and $w_L(2) = 2$. The Lee weight of a vector $\mathbf{u} \in \mathbb{Z}_4^N$ is the addition of the weights of its coordinates. The Lee distance $d_L(\mathbf{u}, \mathbf{v})$ between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_4^N$ is defined as $d_L(\mathbf{u}, \mathbf{v}) = w_L(\mathbf{u} - \mathbf{v})$.

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code and let C be the code obtained from $\Phi(C)$, where $\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^{\alpha+2\beta}$ is given by the map $\Phi(u_1, \ldots, u_{\alpha} | v_1, \ldots, v_{\beta}) = (u_1, \ldots, u_{\alpha} | \phi(v_1), \ldots, \phi(v_{\beta}))$ where $\phi(0) = (0, 0), \phi(1) = (0, 1), \phi(2) = (1, 1)$ and $\phi(3) = (1, 0)$ are the usual Gray map from \mathbb{Z}_4 onto \mathbb{Z}_2^2 . Now, it is clear that

$$\mathbf{u} + \mathbf{v} = \Phi(\Phi^{-1}(\mathbf{u}) + \Phi^{-1}(\mathbf{v})), \ \forall \mathbf{u}, \mathbf{v} \in \mathbb{Z}_2^n.$$

Hamming and Lee weights (or distances) of a vector in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ can be computed by adding the corresponding weights (or distances) of the α coordinates and β coordinates. It is known that Gray map is a distance preserving mapping, specifically, the Hamming distance of a binary code C coincides with the Lee distance computed in the additive code $\mathcal{C} = \Phi^{-1}(C)$ where it comes from. Hence, Hamming distance will be used in binary codes whereas Lee distance will be used in additive codes.

Since a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} is a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, it is also isomorphic to an abelian structure like $\mathbb{Z}_2^{\gamma} \times \mathbb{Z}_4^{\delta}$. Therefore, \mathcal{C} has $|\mathcal{C}| = 2^{\gamma}4^{\delta}$ codewords and, moreover, $2^{\gamma+\delta}$ of them have order two. This code \mathcal{C} is called a $\mathbb{Z}_2\mathbb{Z}_4$ additive code of type $(\alpha, \beta; \gamma, \delta)$ and its binary image $C = \Phi(\mathcal{C})$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code of type $(\alpha, \beta; \gamma, \delta)$.

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code with $\alpha = 0$ is a quaternary linear code and its corresponding binary image is called a \mathbb{Z}_4 -linear code, whereas a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code with $\beta = 0$ is a binary code. Hence, $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes could be considered as a generalization of binary linear codes and \mathbb{Z}_4 -linear codes.

A generator matrix of size $(\gamma + \delta) \times (\alpha + \beta)$ for a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code is of the form

$$\mathcal{G} = \left(\frac{B_2 | Q_2}{B_1 | Q_1}\right)$$

where B_2 and B_1 are binary matrices of size $\gamma \times \alpha$ and $\delta \times \alpha$, respectively; Q_2 is a $\gamma \times \beta$ -quaternary matrix which contains order two row vectors; and Q_1 is a $\delta \times \beta$ -quaternary matrix with order four row vectors.

Two $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes C_1 and C_2 are monomially equivalent if one can be obtained from the other by permuting the coordinates and, if necessary, changing the sign of certain quaternary coordinates. If these $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes, C_1 and C_2 , differ just in one permutation of coordinates, then they are permutation equivalent.

Let C be a subset of a linear space, $\langle C \rangle$ denotes the linear subspace spanned by C.

The standard inner product of any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ is defined as:

$$\mathbf{u} \cdot \mathbf{v} = 2\left(\sum_{i=1}^{\alpha} u_i v_i\right) + \sum_{j=\alpha+1}^{\alpha+\beta} u_j v_j \in \mathbb{Z}_4.$$

The $\mathbb{Z}_2\mathbb{Z}_4$ -additive dual code of \mathcal{C} , denoted by \mathcal{C}^{\perp} , is the set of vectors which are orthogonal to all codewords of \mathcal{C} , i.e.,

$$\mathcal{C}^{\perp} = \{ \mathbf{u} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \mid \mathbf{u} \cdot \mathbf{v} = 0, \text{ for all } \mathbf{v} \in \mathcal{C} \}.$$

The $\mathbb{Z}_2\mathbb{Z}_4$ -additive dual code \mathcal{C}^{\perp} obtained by the inner product is also an additive code. Its weight enumerator is related to the weight enumerator of \mathcal{C} by the MacWilliams identity. The corresponding binary code $\Phi(\mathcal{C}^{\perp})$ is denoted by C_{\perp} and it is called $\mathbb{Z}_2\mathbb{Z}_4$ -dual code of C. When $\alpha = 0$, the code \mathcal{C}^{\perp} is also called the *quaternary dual code* of \mathcal{C} whereas C_{\perp} is the \mathbb{Z}_4 -dual code of C. Furthermore, note that C and C_{\perp} are formal duals since they are not necessarily dual in the binary linear sense but the weight enumerator polynomial of C_{\perp} is the MacWilliams transform of the weight enumerator polynomial of C.

Henceforward, we focus our attention specifically to $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes with $\alpha = 0$, i.e. quaternary linear codes such that, under the Gray map, they give rise to \mathbb{Z}_4 -linear codes. We will denote their type as $(N; \gamma, \delta)$, whenever $\alpha = 0$ and $\beta = N$.

In [12] two constructions of quaternary linear codes are defined. The most important of them for the current paper is the Plotkin construction [9], which was generalized to quaternary linear codes.

Let \mathcal{A} and \mathcal{B} be two quaternary linear codes of types $(N; \gamma_A, \delta_A)$ and $(N; \gamma_B, \delta_B)$ and minimum distances d_A and d_B , respectively. The quaternary Plotkin construction defines a new quaternary linear code in terms of the above-named codes as follows

$$\mathcal{PC}(\mathcal{A},\mathcal{B}) = \{(\mathbf{u}_1 | \mathbf{u}_1 + \mathbf{u}_2) : \mathbf{u}_1 \in \mathcal{A}, \mathbf{u}_2 \in \mathcal{B}\},\$$

where "|" denotes concatenation. For additive codes, the above construction can also be defined in terms of generator matrices. Let $\mathcal{G}_{\mathcal{A}}$ and $\mathcal{G}_{\mathcal{B}}$ be the generator matrices of \mathcal{A} and \mathcal{B} , respectively. Then, the code $\mathcal{PC}(\mathcal{A}, \mathcal{B})$ has the following generator matrix:

$$\mathcal{G}_{PC} = \begin{pmatrix} \mathcal{G}_{\mathcal{A}} & \mathcal{G}_{\mathcal{A}} \\ 0 & \mathcal{G}_{\mathcal{B}} \end{pmatrix}.$$
 (1)

As proved in [12], the obtained quaternary linear code $\mathcal{PC}(\mathcal{A}, \mathcal{B})$ is of type $(2N; \gamma, \delta)$, where $\gamma = \gamma_{\mathcal{A}} + \gamma_{\mathcal{B}}$ and $\delta = \delta_{\mathcal{A}} + \delta_{\mathcal{B}}$; the binary length is n = 4N; the size is $2^{\gamma+2\delta}$ and the minimum distance is $d = min\{2d_{\mathcal{A}}, d_{\mathcal{B}}\}$.

About the \mathbb{Z}_4 -linear Reed-Muller $ZRM^-(r, m-1)$ and $RM_s(r, m)$ codes

3 Reed-Muller codes

As it is shown in [9], a binary linear rth-order Reed-Muller code RM(r +(1, m + 1) with $0 \le r \le m$ and $m \ge 1$ can be described using the Plotkin construction in terms of RM(r+1,m) and RM(r,m) as

$$RM(r+1, m+1) = \{ (\mathbf{u} | \mathbf{u} + \mathbf{v}) \mid \mathbf{u} \in RM(r+1, m), \mathbf{v} \in RM(r, m) \},\$$

where RM(0,m) is the repetition code $\{0,1\}$ and "|" denotes concatenation. There is an equivalent statement in terms of generator matrices. Let G(r, m)be a generator matrix of RM(r, m), then

$$G(r+1, m+1) = \begin{pmatrix} G(r+1, m) & G(r+1, m) \\ 0 & G(r, m) \end{pmatrix},$$
(2)

where G(0, m) = (1).

As it can be noted, a previous sequence RM(r,m) is needed to obtain a new sequence RM(r, m + 1) by means of the Plotkin construction. We can start the construction of the different families $\{RM(r,m)\}$ by using the sequence $\{RM(-1,2), RM(0,2), RM(1,2), RM(2,2)\}$, where RM(-1,2)is the code with only a zero vector, RM(0,2) is the code $\{0,1\}, RM(1,2)$ is the even code of binary length four and RM(2,2) is the full space $\mathbb{Z}_2^{2^2}$. After doing the Plotkin construction in the family $\{RM(r,m)\}$, new codes $RM(-1, m+1) = \{\mathbf{0}\}$ and $RM(m+1, m+1) = \mathbb{Z}_2^{2^{m+1}}$ need to be added to the obtained family.

Theorem 1 [9] The rth-order binary Reed-Muller code RM(r,m) of length 2^m , $0 \le r \le m$, $m \ge 1$, has the following properties:

- The dimension of the code is $k = \sum_{i=0}^{r} {m \choose i}$. The minimum distance is $d = 2^{m-r}$.
- For all r < m, we have $RM(r,m) \subseteq RM(r+1,m)$. Code RM(0,m) is the repetition code $\{0, 1\}$, code RM(m-1, m) is the even code, which consists of all even weight words of length 2^m , and RM(m,m) is the full space $\mathbb{Z}_2^{2^m}$.
- $RM(r,m)^{\perp} = RM(m-r-1,m), \forall 0 \leq r < m.$ For instance, the code RM(1,m) is the binary linear Hadamard code whereas the code RM(m-1)(2,m) is its dual, i.e. the extended binary Hamming code of length 2^m .

Theorem 2 [6,7] The rth-order Reed-Muller code RM(r,m) of length $n = 2^m$, $m \geq 1$, is \mathbb{Z}_4 -linear for r = 0, 1, 2, m - 1, m and is not \mathbb{Z}_4 -linear for $m - 2 \geq 1$ $r \geq 3.$

4 Some quaternary Reed-Muller codes

4.1 Additive $\mathcal{ZRM}^{-}(r,m)$ codes

Let r, m be integers such that $0 \le r \le m$. Let RM(r, m) be a rth-order binary Reed-Muller code and G(r, m) its generator matrix.

The following definition can be found in [13]. Let $\mathcal{ZRM}^{-}(r,m)$ be the quaternary code of quaternary length 2^{m} generated by the matrix

$$\begin{pmatrix} G(r-1,m)\\ 2G(r,m) \end{pmatrix},\tag{3}$$

where we consider the ones from the binary matrices G as ones in the quaternary ring \mathbb{Z}_4 .

Denote by $ZRM^{-}(r,m) = \Phi(\mathcal{ZRM}^{-}(r,m))$ the \mathbb{Z}_4 -linear code of length 2^{m+1} .

We will also use the notation $\mathcal{ZRM}^{-}(m+1,m)$ for the code defined by the matrix

$$\begin{pmatrix} G(m,m)\\ 2G(m,m) \end{pmatrix}.$$
 (4)

Proposition 1 [6,13] Let r = 0, 1, 2, m - 1, m. Then, $ZRM^{-}(r, m - 1) = RM(r, m)$.

4.2 Additive $\mathcal{RM}_s(r,m)$ codes

 $\mathcal{RM}_s(r,m)$ codes were proposed in [12] with the aim of constructing new families of quaternary linear codes such that, after the Gray map, \mathbb{Z}_4 -linear codes with the parameters and properties quoted in Theorem 1 are obtained.

Just as there is only one RM family in the binary case, in the quaternary case there are $\lfloor \frac{m+1}{2} \rfloor$ families for each value of m. It is known that for any m there exist $\lfloor \frac{m+1}{2} \rfloor$ non-isomorphic \mathbb{Z}_4 -linear extended perfect codes [4,8]. Hence, it is expected to obtain $\lfloor \frac{m+1}{2} \rfloor$ families of quaternary linear Reed-Muller codes. Each one of them will contain one of the above-mentioned \mathbb{Z}_4 linear extended perfect codes.

Following the same notation than [12], each different family $\{\mathcal{RM}_s(r,m)\}$ is identified by a subindex $s \in \{0, \ldots, \lfloor \frac{m-1}{2} \rfloor\}$.

Theorem 3 [12] Let $\mathcal{RM}_s(r, m-1)$ and $\mathcal{RM}_s(r-1, m-1)$, $0 \le s \le \lfloor \frac{m-2}{2} \rfloor$, be any two \mathcal{RM} codes of binary length $n = 2^{m-1}$; 2^{k_r} and $2^{k_{r-1}}$ codewords; minimum distance 2^{m-r-1} and 2^{m-r} , respectively, where $k_r = \sum_{i=0}^r \binom{m-1}{i}$, $k_{r-1} = \sum_{i=0}^{r-1} \binom{m-1}{i}$. Let $\mathcal{G}_s(r, m)$ be a generator matrix of $\mathcal{RM}_s(r, m)$.

For any r and $m \ge 2$, 0 < r < m, the code of which generator matrix is obtained by using the quaternary Plotkin construction

$$\mathcal{G}_s(r,m) = \begin{pmatrix} \mathcal{G}_s(r,m-1) & \mathcal{G}_s(r,m-1) \\ 0 & \mathcal{G}_s(r-1,m-1) \end{pmatrix}$$

where $0 \leq s \leq \lfloor \frac{m-1}{2} \rfloor$, is a quaternary linear code of binary length $n = 2^m$; 2^k codewords, where $k = \sum_{i=0}^r \binom{m}{i}$; minimum distance 2^{m-r} and, moreover, $\mathcal{RM}_s(r-1,m) \subset \mathcal{RM}_s(r,m)$.

About the \mathbb{Z}_4 -linear Reed-Muller $ZRM^-(r, m-1)$ and $RM_s(r, m)$ codes

The quaternary linear Reed-Muller code $\mathcal{RM}_s(0,m)$ is the repetition code with only one nonzero codeword (the all-twos vector). The code $\mathcal{RM}_s(m,m)$ is the whole space $\mathbb{Z}_4^{2^{m-1}}$ and the codes $\mathcal{RM}_s(1,m)$ and $\mathcal{RM}_s(m-2,m)$ are, respectively, a \mathbb{Z}_4 -linear Hadamard code and a \mathbb{Z}_4 -linear extended perfect code.

Among all families we will focus just on the family s = 0. As described in [12], this family can be obtained by applying the quaternary Plotkin construction of Theorem 3 starting with the family

$$\{\mathcal{RM}_0(0,2), \mathcal{RM}_0(1,2), \mathcal{RM}_0(2,2)\}.$$
 (5)

5 Equality between $\mathcal{ZRM}^{-}(r,m-1)$ and $\mathcal{RM}_{s}(r,m)$

Theorem 4 Let $\mathcal{ZRM}^{-}(r, m-1)$ be the family of quaternary Reed-Muller codes defined as in Section 4.1 and let { $\mathcal{RM}_0(r, m)$ } be the family of $\mathcal{RM}_s(r, m)$ codes such that s = 0, defined in Section 4.2. Both families of codes are equal.

Proof. The family of codes $\mathcal{RM}_0(r,m)$ can be obtained by means of the Plotkin construction (see Theorem 3), starting with the family of codes $\{\mathcal{RM}_0(0,2), \mathcal{RM}_0(1,2), \mathcal{RM}_0(2,2)\}$, such that their generator matrices are, respectively, $(2\ 2\), \begin{pmatrix} 1\ 1\\ 0\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1\ 0\\ 0\ 1 \end{pmatrix}$.

The family $\{\mathcal{RM}_0(r, m)\}$, is obtained performing the Plotkin construction. Straight afterwards, the codes

$$\mathcal{RM}_0(-1, m+1) = \{\mathbf{0}\}, \mathcal{RM}_0(m+1, m+1) = \mathbb{Z}_4^{2^m}, \tag{6}$$

must be added to the resulting sequence of codes.

Taking into account the generator matrix of $\mathcal{ZRM}^{-}(r,m)$ codes defined in (3), we proceed to see the coincidence between $\mathcal{ZRM}^{-}(r,2)$ and $\{\mathcal{RM}_{0}(r,3)\}$ families of codes, for $0 \leq r \leq 3$.

For r = 0, the generator matrix of the $\mathcal{ZRM}^{-}(0,2)$ code is $\begin{pmatrix} G(-1,2)\\ 2G(0,2) \end{pmatrix} = (2\ 2\ 2\ 2)$ and it exactly coincides with the generator matrix of the $\mathcal{RM}_{0}(0,3)$

(2.2.2.2) and it exactly coincides with the generator matrix of the $\mathcal{KM}_0(0,3)$ code.

For
$$r = 1$$
, $\mathcal{ZRM}^{-}(1,2)$ has the following matrix $\begin{pmatrix} G(0,2)\\ 2G(1,2) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 2 & 0 & 2\\ 0 & 0 & 2 & 2 \end{pmatrix}$

as generator matrix, since $G(1,2) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ by (2). In this case the result-

ing matrix also coincides with the generator matrix of the $\mathcal{RM}_0(1,3)$ code, which can be computed from the matrix $\begin{pmatrix} \mathcal{G}_0(1,2) & \mathcal{G}_0(1,2) \\ 0 & \mathcal{G}_0(0,2) \end{pmatrix}$ by Theorem 3.

For r = 2, the generator matrix of the $\mathcal{ZRM}^{-}(2,2)$ code is $\begin{pmatrix} G(1,2)\\ 2G(2,2) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 2 \end{pmatrix}$ and it also coincides with the one from the $\mathcal{RM}_{0}(2,3)$ code, which

can be computed from $\begin{pmatrix} \mathcal{G}_0(2,2) & \mathcal{G}_0(2,2) \\ 0 & \mathcal{G}_0(1,2) \end{pmatrix}$. Finally, for r = 3, the $\mathcal{ZRM}^-(3,2)$ code has the following generator matrix

Finally, for r = 3, the $\mathcal{ZRM}^{-}(3,2)$ code has the following generator matrix $\begin{pmatrix} G(2,2)\\ 2G(2,2) \end{pmatrix} = \mathbb{Z}_{4}^{4}$, by (4) and, once more, it coincides by definition with the generator matrix of the $\mathcal{RM}_{0}(3,3)$ code.

As it has been just proved, the $\mathcal{ZRM}^{-}(r,2)$ family of codes exactly coincides with the family $\{\mathcal{RM}_{0}(r,3)\}$.

Let us assume we perform the Plotkin construction with $\mathcal{ZRM}^{-}(r,m)$ and $\mathcal{ZRM}^{-}(r+1,m)$ codes. Then, by (2), the construction generates the following matrix:

$$\begin{pmatrix} G(r,m) & G(r,m) \\ 2G(r+1,m) & 2G(r+1,m) \\ 0 & G(r-1,m) \\ 0 & 2G(r,m) \end{pmatrix}.$$

It can be noted that

$$\begin{pmatrix} G(r,m) & G(r,m) \\ 0 & G(r-1,m) \end{pmatrix} = G(r,m+1)$$

and

$$\binom{2G(r+1,m)}{0} \frac{2G(r+1,m)}{2G(r,m)} = 2G(r+1,m+1),$$

since binary linear Reed-Muller codes can be constructed using the Plotkin construction (see (2)).

Therefore, the Plotkin construction has given the following matrix:

$$\left(\begin{array}{c} G(r,m+1)\\ 2G(r+1,m+1) \end{array}
ight),$$

which, by (3), corresponds to the generator matrix of the code $\mathcal{ZRM}^{-}(r+1,m+1)$.

Thus, as it has been proved, the $\mathcal{ZRM}^{-}(r, m + 1)$ family is obtained from the Plotkin construction performed over the $\mathcal{ZRM}^{-}(r, m)$ family. Once the whole new family is constructed, the $\mathcal{ZRM}^{-}(-1, m + 1) = \{\mathbf{0}\}$ and $\mathcal{ZRM}^{-}(m + 1, m + 1) = \mathbb{Z}_{4}^{2^{m+1}}$ codes must be added to the resulting sequence of codes, in the same way as we did in the $\{\mathcal{RM}_{0}(r, m + 1)\}$ family (see (6)). Note that both added codes coincide with the corresponding added codes for the $\{\mathcal{RM}_0(r, m+1)\}$ family.

As it has been shown, the family $\{\mathcal{RM}_0(r,3)\}$ coincides with the family $\mathcal{ZRM}^-(r,2)$ and, performing the same Plotkin construction to both families, we obtain the different $\{\mathcal{RM}_0(r,m+1)\}$ and $\mathcal{ZRM}^-(r,m)$ families of codes. Hence, all these families coincide for all values of m.

9

6 Conclusions

In this paper a step forward has been given in the classification of the different quaternary codes present in the literature and related to the binary Reed-Muller codes. We have proved that not only $\mathcal{ZRM}^{-}(r, m - 1)$ and $\{\mathcal{RM}_s(r,m)\}$ families of codes are equivalent, but they are also equal for the specific family s = 0. Therefore, it is possible to obtain \mathbb{Z}_4 -linear Reed-Muller codes with the same parameters and properties as the binary linear Reed-Muller code, with both definitions. Moreover, the equality also implies that $\mathcal{ZRM}^{-}(r, m - 1)$ codes can be constructed by means of the Plotkin construction in the same way as $\mathcal{RM}_0(r, m)$ codes were constructed.

7 Further research

Further work needs to be carried out to study the natural inclusion of Delsarte-Goethals, Goethals-Delsarte, Goethals, Preparata, as well as Kerdock codes, within the $\{\mathcal{RM}_0(r,m)\}$ family of codes. In the $\{\mathcal{RM}_0(r,4)\}$ family, and more specifically in the code $\mathcal{RM}_0(2,4)$, we have found the quaternary Kerdock code of quaternary length 8 as a subspace. In the $\{\mathcal{RM}_0(r,6)\}$ family, we have realized that the code $\mathcal{RM}_0(2,6)$ is the quaternary Delsarte-Goethals code of quaternary length 32. We have also found the quaternary Kerdock code as a subspace of the $\mathcal{RM}_0(2,6)$ code, even though its construction has been done in a practical and not theoretical way. Future lines of research should also analyze the relationship between the codes found within a given code, and the codes which can be found within the dual of the given code.

References

- J. Borges, C. Fernández and K.T. Phelps, "Quaternary Reed-Muller codes", *IEEE Trans. on Information Theory*, vol. 51(7), pp. 2686-2691, 2005.
- [2] J. Borges, C. Fernández and K.T. Phelps, "ZRM codes", IEEE Trans. on Information Theory, vol. 54(1), pp. 380-386, 2008.

- 10 J. Rifà and L. Ronquillo
- [3] J. Borges, K.T. Phelps, J. Rifà and V.A.Zinoviev, "On Z₄-linear Preparata-like and Kerdock-like codes", *IEEE Trans. on Information Theory*, vol. 49(11), pp. 2834-2843, 2003.
- [4] J. Borges, and J. Rifà, "A characterization of 1-perfect additive codes," *IEEE Trans. Inform. Theory*, v. 45, n. 5, pp. 1688-1697, 1999.
- [5] C. Carlet, " \mathbb{Z}_{2^k} -Linear codes", *IEEE Trans. on Information Theory*, vol. 44, pp. 1543-1547, 1998.
- [6] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, "The Z₄-linearity of kerdock, preparata, goethals and related codes", *IEEE Trans. on Information Theory*, vol. 40, pp. 301-319, 1994.
- [7] X. -D. Hou, J. T. Lahtonen, and S. Koponen, "The Reed-Muller Code R(r, m) is not \mathbb{Z}_4 -linear for $3 \leq r \leq m 2$ ", *IEEE Trans. on Information Theory*, vol. 45, pp. 798-799, 1998.
- [8] D. S. Krotov, "Z₄-linear Hadamard and extended perfect codes", International Workshop on Coding and Cryptography, Paris (France), pp. 329-334, Jan. 8-12, 2001.
- [9] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977.
- [10] A. A. Nechaev, "Kerdock codes in a cyclic form", Disc. Math., vol. 1(4), pp. 123-139, 1989.
- [11] J. Pujol, J. Rifà, "Additive Reed-Muller codes", Proc. of Int. Symp. on Information Theory, Ulm, Germany, pp. 508, 1997.
- [12] J. Pujol, J. Rifà, F. I. Solov'eva, "Quaternary Plotkin constructions and Quaternary Reed-Muller codes", *Lecture Notes in Computer Science* n. 4851, pp. 148-157, 2007.
- [13] Zhe-Xian Wan, Quaternary codes, World Scientific Publishing Co. Pte. Ltd, Singapore, 1997.