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Abstract. Several different families of quaternary codes related to Reed-Muller bi-
nary linear codes can be found in the literature. Two definitions of such families are
denoted as ZRM−(r,m) and {RMs(r,m)}. In the current paper ZRM−(r,m− 1)
and {RMs(r,m)} codes are shown to be equal exactly for s = 0 (0 ≤ s ≤ bm−1

2 c).
Therefore, for the above-mentioned value of s, Z4-linear Reed-Muller codes with the
same parameters and properties as the usual binary linear Reed-Muller code are
obtained with both definitions.
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1 Introduction

The concept of Z4-linearity of binary codes was pioneered by Nechaev in
[10]. This result opened up a new direction in Coding Theory. It basically
stated that certain non-linear binary codes, for instance Kerdock codes, can
be derived from linear codes over the ring Z4.

In a later work, Hammons, Kumar, Calderbank, Sloane and Solé [6], defined
two families of quaternary codes called QRM(r,m) and ZRM(r,m) codes.
Moreover, in respect of the usual binary linear Reed-Muller codes RM(r,m),
they conjectured their Z4-linearity for r ∈ {0, 1, 2,m − 1,m}, but not for
3 ≤ r ≤ m − 2 (whenever m ≥ 5). They proved it for r = m − 2 but the
remain values of r were not validated until the work of Hou, Lahtonen and
Koponen [7].

Zhe-Xian Wan also defined ZRM(r,m) codes with the aim of reviewing
the codes first defined in [6]. However, in [2] it is proved that they happened
to be a different definition of quaternary Reed-Muller codes, which from now
on will be denoted as ZRM−(r,m). In fact, as stated in [2], ZRM(r,m) and
ZRM−(r,m) just coincide for the above-named values of r ∈ {0, 1, 2,m −
1,m} that make their corresponding binary images to be Reed-Muller codes.
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Codes QRM(r,m) are such that the binary linear Reed-Muller codes
RM(r,m) are obtained after computing, for each r, 0 ≤ r ≤ m, the mod-
ulo two instead of the Gray map. These codes were further generalized in
[1], where it is defined a class QRM(r,m) of quaternary codes that includes
QRM(r,m).

Just as binary Reed-Muller codes can be built by means of the Plotkin
construction [9], in [12] quaternary Plotkin constructions are introduced to
build new families of quaternary Reed-Muller codes, denoted as {RMs(r,m)}.
These families were constructed in such a way that the corresponding Z4-linear
codes, obtained under the Gray map, are binary codes which have the same
parameters and properties as the binary linear Reed-Muller codes RM(r,m).

Comparing the above-named definitions of ZRM−(r,m) and {RMs(r,m)}
families of codes, we found that, actually, the families {RMs(r,m)} can be
seen as a generalization of ZRM−(r,m−1), since this last one coincides with
the specific family s = 0, that is with RM0(r,m).

This paper has been organized as follows: in Section 2 some basic definitions
and notation, which will be needed in the remainder of the paper, are given. In
Section 3 some properties of binary Reed-Muller codes are reviewed whereas
Section 4 is focused on quaternary Reed-Muller codes. Section 4.1 reviews the
definition and construction of ZRM−(r,m) codes introduced by [13], and
Section 4.2 is devoted to {RMs(r,m)} families of codes, from [12]. In Section
5 the equality between the ZRM−(r,m − 1) and {RM0(r,m)} families is
established and proved. Finally, some conclusions are drawn in Section 6 and
future lines of research are given in Section 7.

2 Definitions

Let Z2 and Z4 be the ring of integers modulo two and modulo four, respec-
tively. Let Zn2 denote the set of all n-length vectors over Z2 and ZN4 be the
set of all N -length vectors over Z4. Any non-empty subset C of Zn2 is a binary
code and, moreover, a subgroup of Zn2 is called a binary linear code. Equiva-
lently, any non-empty subset C of Zn4 is a quaternary code which is also called
quaternary linear code if it is a subgroup of Zn4 . In general, any non-empty
subgroup C of Zα2 × Zβ4 is a Z2Z4-additive code.
We will denote by 0, 1 and 2 the all-zeroes, the all-ones and the all-twos vec-
tors, respectively. It will be clear by the context whether we refer to binary
vectors 0, 1 or to quaternary vectors.

The Hamming distance d(u,v) between two vectors u, v ∈ Zn2 is the num-
ber of coordinates in which they differ. The Hamming weight wH(u) of a
vector u ∈ Zn2 is the number of nonzero coordinates. The minimum Hamming
distance d of a binary code C is the minimum value of d(u,v), where u,v ∈
C and u 6= v.
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In the case of quaternary codes the Lee metric is used, which, actually, coin-
cides with the Hamming weight in Z2. However, the elements of Z4 have the
following Lee weights: wL(0) = 0, wL(1) = wL(3) = 1 and wL(2) = 2. The
Lee weight of a vector u ∈ ZN4 is the addition of the weights of its coordi-
nates. The Lee distance dL(u,v) between two vectors u,v ∈ ZN4 is defined as
dL(u,v) = wL(u− v).

Let C be a Z2Z4-additive code and let C be the code obtained from Φ(C),
where Φ : Zα2 × Zβ4 −→ Zα+2β

2 is given by the map Φ(u1, . . . , uα|v1, . . . , vβ) =
(u1, . . . , uα|φ(v1), . . . , φ(vβ)) where φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1)
and φ(3) = (1, 0) are the usual Gray map from Z4 onto Z2

2. Now, it is clear
that

u + v = Φ(Φ−1(u) + Φ−1(v)), ∀u,v ∈ Zn2 .

Hamming and Lee weights (or distances) of a vector in Zα2 × Zβ4 can be
computed by adding the corresponding weights (or distances) of the α coordi-
nates and β coordinates. It is known that Gray map is a distance preserving
mapping, specifically, the Hamming distance of a binary code C coincides
with the Lee distance computed in the additive code C = Φ−1(C) where it
comes from. Hence, Hamming distance will be used in binary codes whereas
Lee distance will be used in additive codes.

Since a Z2Z4-additive code C is a subgroup of Zα2 ×Zβ4 , it is also isomorphic
to an abelian structure like Zγ2 × Zδ4. Therefore, C has |C| = 2γ4δ codewords
and, moreover, 2γ+δ of them have order two. This code C is called a Z2Z4-
additive code of type (α, β; γ, δ) and its binary image C = Φ(C) is a Z2Z4-linear
code of type (α, β; γ, δ).
A Z2Z4-additive code with α = 0 is a quaternary linear code and its corre-
sponding binary image is called a Z4-linear code, whereas a Z2Z4-additive code
with β = 0 is a binary code. Hence, Z2Z4-additive codes could be considered
as a generalization of binary linear codes and Z4-linear codes.

A generator matrix of size (γ + δ)× (α+ β) for a Z2Z4-additive code is of
the form

G =
(
B2 Q2

B1 Q1

)
where B2 and B1 are binary matrices of size γ×α and δ×α, respectively; Q2

is a γ× β-quaternary matrix which contains order two row vectors; and Q1 is
a δ × β-quaternary matrix with order four row vectors.

Two Z2Z4-additive codes C1 and C2 are monomially equivalent if one can
be obtained from the other by permuting the coordinates and, if necessary,
changing the sign of certain quaternary coordinates. If these Z2Z4-additive
codes, C1 and C2, differ just in one permutation of coordinates, then they are
permutation equivalent.

Let C be a subset of a linear space, 〈C〉 denotes the linear subspace spanned
by C.
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The standard inner product of any two vectors u, v ∈ Zα2 × Zβ4 is defined
as:

u · v = 2(
α∑
i=1

uivi) +
α+β∑
j=α+1

ujvj ∈ Z4.

The Z2Z4-additive dual code of C, denoted by C⊥, is the set of vectors which
are orthogonal to all codewords of C, i.e.,

C⊥ = {u ∈ Zα2 × Zβ4 | u·v = 0, for all v ∈ C}.

The Z2Z4-additive dual code C⊥ obtained by the inner product is also
an additive code. Its weight enumerator is related to the weight enumerator
of C by the MacWilliams identity. The corresponding binary code Φ(C⊥) is
denoted by C⊥ and it is called Z2Z4-dual code of C. When α = 0, the code
C⊥ is also called the quaternary dual code of C whereas C⊥ is the Z4-dual
code of C. Furthermore, note that C and C⊥ are formal duals since they are
not necessarily dual in the binary linear sense but the weight enumerator
polynomial of C⊥ is the MacWilliams transform of the weight enumerator
polynomial of C.

Henceforward, we focus our attention specifically to Z2Z4-additive codes
with α = 0, i.e. quaternary linear codes such that, under the Gray map, they
give rise to Z4-linear codes. We will denote their type as (N ; γ, δ), whenever
α = 0 and β = N .

In [12] two constructions of quaternary linear codes are defined. The most
important of them for the current paper is the Plotkin construction [9], which
was generalized to quaternary linear codes.

Let A and B be two quaternary linear codes of types (N ; γA, δA) and
(N ; γB, δB) and minimum distances dA and dB, respectively. The quaternary
Plotkin construction defines a new quaternary linear code in terms of the
above-named codes as follows

PC(A,B) = {(u1|u1 + u2) : u1 ∈ A,u2 ∈ B},

where “|” denotes concatenation. For additive codes, the above construction
can also be defined in terms of generator matrices. Let GA and GB be the
generator matrices of A and B, respectively. Then, the code PC(A,B) has the
following generator matrix:

GPC =
(
GA GA
0 GB

)
. (1)

As proved in [12], the obtained quaternary linear code PC(A,B) is of type
(2N ; γ, δ), where γ = γA + γB and δ = δA + δB; the binary length is n = 4N ;
the size is 2γ+2δ and the minimum distance is d = min{2dA, dB}.
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3 Reed-Muller codes

As it is shown in [9], a binary linear rth-order Reed-Muller code RM(r +
1,m + 1) with 0 ≤ r ≤ m and m ≥ 1 can be described using the Plotkin
construction in terms of RM(r + 1,m) and RM(r,m) as

RM(r + 1,m+ 1) = {(u|u + v) | u ∈ RM(r + 1,m),v ∈ RM(r,m)},

where RM(0,m) is the repetition code {0,1} and “|” denotes concatenation.
There is an equivalent statement in terms of generator matrices. Let G(r,m)
be a generator matrix of RM(r,m), then

G(r + 1,m+ 1) =
(
G(r + 1,m) G(r + 1,m)

0 G(r,m)

)
, (2)

where G(0,m) = (1).
As it can be noted, a previous sequence RM(r,m) is needed to obtain

a new sequence RM(r,m + 1) by means of the Plotkin construction. We
can start the construction of the different families {RM(r,m)} by using
the sequence {RM(−1, 2), RM(0, 2), RM(1, 2), RM(2, 2)}, where RM(−1, 2)
is the code with only a zero vector, RM(0, 2) is the code {0,1}, RM(1, 2)
is the even code of binary length four and RM(2, 2) is the full space Z22

2 .
After doing the Plotkin construction in the family {RM(r,m)}, new codes
RM(−1,m+ 1) = {0} and RM(m+ 1,m+ 1) = Z2m+1

2 need to be added to
the obtained family.

Theorem 1 [9] The rth-order binary Reed-Muller code RM(r,m) of length
2m, 0 ≤ r ≤ m, m ≥ 1, has the following properties:

• The dimension of the code is k =
∑r

i=0

(
m
i

)
.

• The minimum distance is d = 2m−r.
• For all r < m, we have RM(r,m) ⊆ RM(r+1,m). Code RM(0,m) is the

repetition code {0,1}, code RM(m−1,m) is the even code, which consists
of all even weight words of length 2m, and RM(m,m) is the full space Z2m

2 .
• RM(r,m)⊥ = RM(m − r − 1,m), ∀ 0 ≤ r < m. For instance, the code

RM(1,m) is the binary linear Hadamard code whereas the code RM(m−
2,m) is its dual, i.e. the extended binary Hamming code of length 2m.

Theorem 2 [6,7] The rth-order Reed-Muller code RM(r,m) of length n = 2m,
m ≥ 1, is Z4-linear for r = 0, 1, 2,m− 1,m and is not Z4-linear for m− 2 ≥
r ≥ 3.

4 Some quaternary Reed-Muller codes

4.1 Additive ZRM−(r, m) codes

Let r,m be integers such that 0 ≤ r ≤ m. Let RM(r,m) be a rth-order binary
Reed-Muller code and G(r,m) its generator matrix.
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The following definition can be found in [13]. Let ZRM−(r,m) be the
quaternary code of quaternary length 2m generated by the matrix(

G(r − 1,m)
2G(r,m)

)
, (3)

where we consider the ones from the binary matrices G as ones in the
quaternary ring Z4.

Denote by ZRM−(r,m) = Φ(ZRM−(r,m)) the Z4-linear code of length
2m+1.

We will also use the notation ZRM−(m + 1,m) for the code defined by
the matrix (

G(m,m)
2G(m,m)

)
. (4)

Proposition 1 [6,13] Let r = 0, 1, 2,m − 1,m. Then, ZRM−(r,m − 1) =
RM(r,m).

4.2 Additive RMs(r, m) codes

RMs(r,m) codes were proposed in [12] with the aim of constructing new
families of quaternary linear codes such that, after the Gray map, Z4-linear
codes with the parameters and properties quoted in Theorem 1 are obtained.

Just as there is only one RM family in the binary case, in the quaternary
case there are bm+1

2 c families for each value of m. It is known that for any
m there exist bm+1

2 c non-isomorphic Z4-linear extended perfect codes [4,8].
Hence, it is expected to obtain bm+1

2 c families of quaternary linear Reed-
Muller codes. Each one of them will contain one of the above-mentioned Z4-
linear extended perfect codes.
Following the same notation than [12], each different family {RMs(r,m)} is
identified by a subindex s ∈ {0, . . . , bm−1

2 c}.

Theorem 3 [12] Let RMs(r,m−1) and RMs(r−1,m−1), 0 ≤ s ≤ bm−2
2 c,

be any two RM codes of binary length n = 2m−1; 2kr and 2kr−1 codewords;
minimum distance 2m−r−1 and 2m−r, respectively, where kr =

∑r
i=0

(
m−1
i

)
,

kr−1 =
∑r−1

i=0

(
m−1
i

)
. Let Gs(r,m) be a generator matrix of RMs(r,m).

For any r and m ≥ 2, 0 < r < m, the code of which generator matrix is
obtained by using the quaternary Plotkin construction

Gs(r,m) =
(
Gs(r,m− 1) Gs(r,m− 1)

0 Gs(r − 1,m− 1)

)
,

where 0 ≤ s ≤ bm−1
2 c, is a quaternary linear code of binary length n = 2m;

2k codewords, where k =
∑r

i=o

(
m
i

)
; minimum distance 2m−r and, moreover,

RMs(r − 1,m) ⊂ RMs(r,m).
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The quaternary linear Reed-Muller code RMs(0,m) is the repetition code
with only one nonzero codeword (the all-twos vector). The code RMs(m,m)
is the whole space Z2m−1

4 and the codes RMs(1,m) and RMs(m − 2,m)
are, respectively, a Z4-linear Hadamard code and a Z4-linear extended perfect
code.

Among all families we will focus just on the family s = 0. As described
in [12], this family can be obtained by applying the quaternary Plotkin con-
struction of Theorem 3 starting with the family

{RM0(0, 2),RM0(1, 2),RM0(2, 2)}. (5)

5 Equality between ZRM−(r, m− 1) and RMs(r, m)

Theorem 4 Let ZRM−(r,m − 1) be the family of quaternary Reed-Muller
codes defined as in Section 4.1 and let {RM0(r,m)} be the family of RMs(r,m)
codes such that s = 0, defined in Section 4.2. Both families of codes are equal.

Proof. The family of codes RM0(r,m) can be obtained by means of the
Plotkin construction (see Theorem 3), starting with the family of codes
{RM0(0, 2),RM0(1, 2),RM0(2, 2)}, such that their generator matrices are,

respectively,
(

2 2
)
,
(

1 1
0 2

)
and

(
1 0
0 1

)
.

The family {RM0(r,m)}, is obtained performing the Plotkin construction.
Straight afterwards, the codes

RM0(−1,m+ 1) = {0},RM0(m+ 1,m+ 1) = Z2m

4 , (6)

must be added to the resulting sequence of codes.
Taking into account the generator matrix of ZRM−(r,m) codes defined in

(3), we proceed to see the coincidence between ZRM−(r, 2) and {RM0(r, 3)}
families of codes, for 0 ≤ r ≤ 3.

For r = 0, the generator matrix of the ZRM−(0, 2) code is
(
G(−1, 2)
2G(0, 2)

)
=(

2 2 2 2
)

and it exactly coincides with the generator matrix of the RM0(0, 3)
code.

For r = 1, ZRM−(1, 2) has the following matrix
(
G(0, 2)
2G(1, 2)

)
=

1 1 1 1
0 2 0 2
0 0 2 2


as generator matrix, since G(1, 2) =

1 0 1 0
0 1 0 1
0 0 1 1

 by (2). In this case the result-

ing matrix also coincides with the generator matrix of the RM0(1, 3) code,

which can be computed from the matrix
(
G0(1, 2) G0(1, 2)

0 G0(0, 2)

)
by Theorem 3.
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For r = 2, the generator matrix of the ZRM−(2, 2) code is
(
G(1, 2)
2G(2, 2)

)
=

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

 and it also coincides with the one from the RM0(2, 3) code, which

can be computed from
(
G0(2, 2) G0(2, 2)

0 G0(1, 2)

)
.

Finally, for r = 3, the ZRM−(3, 2) code has the following generator matrix(
G(2, 2)
2G(2, 2)

)
= Z4

4, by (4) and, once more, it coincides by definition with the

generator matrix of the RM0(3, 3) code.

As it has been just proved, the ZRM−(r, 2) family of codes exactly coin-
cides with the family {RM0(r, 3)}.

Let us assume we perform the Plotkin construction with ZRM−(r,m)
and ZRM−(r + 1,m) codes. Then, by (2), the construction generates the
following matrix: 

G(r,m) G(r,m)
2G(r + 1,m) 2G(r + 1,m)

0 G(r − 1,m)
0 2G(r,m)

 .

It can be noted that(
G(r,m) G(r,m)

0 G(r − 1,m)

)
= G(r,m+ 1)

and (
2G(r + 1,m) 2G(r + 1,m)

0 2G(r,m)

)
= 2G(r + 1,m+ 1),

since binary linear Reed-Muller codes can be constructed using the Plotkin
construction (see (2)).

Therefore, the Plotkin construction has given the following matrix:(
G(r,m+ 1)

2G(r + 1,m+ 1)

)
,

which, by (3), corresponds to the generator matrix of the code ZRM−(r +
1,m+ 1).

Thus, as it has been proved, the ZRM−(r,m + 1) family is obtained
from the Plotkin construction performed over the ZRM−(r,m) family. Once
the whole new family is constructed, the ZRM−(−1,m + 1) = {0} and
ZRM−(m + 1,m + 1) = Z2m+1

4 codes must be added to the resulting se-
quence of codes, in the same way as we did in the {RM0(r,m + 1)} family
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(see (6)). Note that both added codes coincide with the corresponding added
codes for the {RM0(r,m+ 1)} family.
As it has been shown, the family {RM0(r, 3)} coincides with the family
ZRM−(r, 2) and, performing the same Plotkin construction to both fami-
lies, we obtain the different {RM0(r,m + 1)} and ZRM−(r,m) families of
codes. Hence, all these families coincide for all values of m.

ut

6 Conclusions

In this paper a step forward has been given in the classification of the dif-
ferent quaternary codes present in the literature and related to the binary
Reed-Muller codes. We have proved that not only ZRM−(r,m − 1) and
{RMs(r,m)} families of codes are equivalent, but they are also equal for
the specific family s = 0. Therefore, it is possible to obtain Z4-linear Reed-
Muller codes with the same parameters and properties as the binary linear
Reed-Muller code, with both definitions. Moreover, the equality also implies
that ZRM−(r,m − 1) codes can be constructed by means of the Plotkin
construction in the same way as RM0(r,m) codes were constructed.

7 Further research

Further work needs to be carried out to study the natural inclusion of Delsarte-
Goethals, Goethals-Delsarte, Goethals, Preparata, as well as Kerdock codes,
within the {RM0(r,m)} family of codes. In the {RM0(r, 4)} family, and more
specifically in the code RM0(2, 4), we have found the quaternary Kerdock
code of quaternary length 8 as a subspace. In the {RM0(r, 6)} family, we
have realized that the code RM0(2, 6) is the quaternary Delsarte-Goethals
code of quaternary length 32. We have also found the quaternary Kerdock
code as a subspace of the RM0(2, 6) code, even though its construction has
been done in a practical and not theoretical way. Future lines of research
should also analyze the relationship between the codes found within a given
code, and the codes which can be found within the dual of the given code.
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